
Project Report: Inverted Pendulum

COMP0216 - Systems Engineering for Real-time Systems

Spring 2025

Group Members: Daniel Helmi, Muhammad Maaz, Arjun Bhaduri,
Rehan Agrawal

University College London

April 4, 2025

Contents

1 Introduction 3

2 Project Planning 3
2.1 Mind Map . 3
2.2 Work Breakdown Structure (WBS) . 3
2.3 Risk Breakdown Structure (RBS) . 3
2.4 A-B-M Estimates, Expected Time, and Standard Deviation 3
2.5 Slack . 4
2.6 Project Network Diagram . 5
2.7 Critical Path and Completion Time (CP, CT) 5
2.8 Gantt Chart . 5
2.9 RACI Matrix . 6
2.10 Probability of Completion . 6

3 Risk Management 6
3.1 Failure Modes and Effects Analysis (FMEA) 6
3.2 Redundancies and Compensatory Measures 6
3.3 Ishikawa (Fishbone) Diagram . 7
3.4 Power–Interest Grid . 7
3.5 Risk Matrix . 8
3.6 Security Threats, Vulnerabilities, and Mitigation 8
3.7 Applied Lean Methods . 9

4 System Requirement Specification 9
4.1 Dynamics and Kinematics Requirements Consistency 9
4.2 Logical Requirements Consistency . 9
4.3 Mealy Machine . 10
4.4 Model-Based System Engineering (MBSE) 10
4.5 Reliability and Failure Time Metrics . 11

5 Modelling and Simulation 12
5.1 Equations of Motion . 12

5.1.1 Nonlinear Dynamics . 12
5.1.2 State-Space Representation . 13
5.1.3 Linearized Model . 13

5.2 Controller Design and Implementation . 13
5.2.1 PID Controller . 13
5.2.2 Pole Placement Controller . 14

1

5.2.3 Nonlinear Controller . 14
5.3 Python Implementation Details . 14

5.3.1 Pendulum Physics Module . 14
5.3.2 Sensor Noise and Filtering . 14

5.4 Results and Benchmarking . 15

6 Prototyping 16
6.1 Electrical Diagram (Schematics) . 16
6.2 Mechanical (CAD) Design . 18
6.3 Controller Design Approaches . 19

6.3.1 System Modeling and Linearization 19
6.3.2 PID Controller . 19
6.3.3 Pole Placement Controller . 20
6.3.4 LQR Controller . 20

7 Overview 20
7.1 Benchmarking and Results . 20

7.1.1 LQR Controller . 20
7.1.2 Pole Placement . 21
7.1.3 PID Analysis . 24
7.1.4 PID with failure . 25
7.1.5 Failure Metrics . 26
7.1.6 Overall Controller Performance Comparison 28

8 Conclusion 28

9 References 29

10 Appendix 30
10.1 Ethical Considerations . 30
10.2 Figures and Code Snippets . 30
10.3 Planning and Results Video Link or Screenshot 36
10.4 Code Submissions . 36

2

1 Introduction
This project creates an inverted pendulum with the aim of testing different control

strategies. System behaviour analysis uses state-space representation, non-linear dynam-
ics, and linearised models. Python implemented PID, LQR, and non-linear controllers.
Real-world performance improves with sensor noise and filtering. Electrical schematics,
CAD, and PCB layouts construct and test the system.

We were inspired by online inverted pendulum systems. University of Michigan Control
Tutorials for MATLAB and Simulink model the inverted pendulum. [1].

2 Project Planning

2.1 Mind Map
The mind map, found in the appendix (Fig. 46).

2.2 Work Breakdown Structure (WBS)
A figure of the WBS can be found in the appendix (Fig. 47)

2.3 Risk Breakdown Structure (RBS)
The Risk Breakdown Structure can be found in the Appendix (Tab. 12)

2.4 A-B-M Estimates, Expected Time, and Standard Deviation

Figure 1: Activity Chart Showing Task Se-
quences, Expected Times, and Variance

Example Path:

• A sample path: Start → 1a
→ 1b → 2a → 2b → 4c → 4e
→ 5a → 6a → 6c → END

• This sequence includes
high-variance tasks such as
5a (6.3 days, 0.44) and
6a (4 days, 0.44), which
are likely candidates for the
critical path.

3

Figure 2: Time Estimates for Project Activities
Using A–B–M and PERT

Examples:

• Activities like 1A, B, and 1
have no uncertainty (zero
variance), indicating
deterministic durations.

• Activities like 3A, 4C, and
5A have higher standard
deviations, meaning they
introduce more schedule risk.

• The “Immediate
Predecessor” column
identifies which activities
must be completed before the
current one can start, helping
define the dependency graph
and calculate the project’s
overall duration.

2.5 Slack

Figure 3: List of Activities with Associated Slack

Critical Path and Completion
Time from Slack

The critical path can also be
derived using the slack values in
this table. As shown, the path:
1a → 1b → 2a → 4c → 4d → 4f →
5a → 6a → 6c
consists entirely of tasks with zero
slack, confirming it as the critical
path. The total completion time
along this path is 24.1 days,
which aligns with the earlier
analysis.

4

2.6 Project Network Diagram

Figure 4: Network Diagram Representing Task
Dependencies and Critical Path

Critical Path Insight:

• Sensor Noise Simulation →
Controller Simulator →
Python Implementation →
Prototype → Test in Lab →
Written Content

2.7 Critical Path and Completion Time (CP, CT)

Figure 5: Gantt Chart Showing Critical Path
(Red) and Completion Time

Gantt Chart Timeline:
The figure shows a Gantt chart for
the Inverted Pendulum project. It
visually presents scheduled tasks
along a timeline from January 16,
2025 to March 24, 2025,
covering a total of 48 working
days.
Tasks on the critical path are
highlighted in red. Their alignment
indicates dependencies and the
sequence of operations that
directly affect project duration.

2.8 Gantt Chart
A figure of the Gantt Chart can be found in the appendix ((Fig. 48))
Key Notes:

• The project spans from January 16, 2025 to March 24, 2025, totaling 48 work-
ing days.

• Tasks are grouped under major milestones (Milestone A to F), each associated with
key phases such as modelling, risk management, implementation, and reporting.

• Dependencies ensure that tasks follow a logical flow—for example, ”Give Presenta-
tion” (Task 4) cannot begin until ”Make Presentation” (Task 3) is completed.

5

• Later phases such as Python Implementation, Prototyping, and Written Content are
on the critical path and must be tightly monitored.

2.9 RACI Matrix

Figure 6: RACI Matrix for Project Team Respon-
sibilities

Explanation:
Each row in the matrix
corresponds to a project task (e.g.,
“1.a”, “2.b”, etc.) associated with
one of the project’s milestones
(M.A–M.F). Each team member is
assigned a role — R (Responsible),
A (Accountable), C (Consulted),
or I (Informed) — based on their
involvement in that specific task.

For example, in Task 1.a (Make
Presentation), Arjun is marked as
“I”, Daniel as “R”, and Rehan as
“I”, indicating Daniel is actively
working on the task while others
are kept informed.

2.10 Probability of Completion
There are 48 days before the deadline. To determine the probability of completing

the project within this time, we use the Z-score formula: Z = X−µ
σ

, where σ is the
square root of the sum of variances of critical path activities. The variance for each
activity is calculated as

(
Pessimistic - Optimistic

6

)2
. Summing the variances along the critical

path gives σ2 = 0.6563, so σ =
√

0.6563 ≈ 0.81. Substituting into the Z-score formula:
Z = 48−24.1

0.81 = 23.9
0.81 ≈ 29.51. The probability P (Z ≤ 29.51) is approximately 1.00000,

meaning the project is certain to be completed within 48 days.

3 Risk Management

3.1 Failure Modes and Effects Analysis (FMEA)
The FMEA Analysis form can be found in the appendix (Tab. 13)

3.2 Redundancies and Compensatory Measures
• Sensor Redundancy: The system was designed to support multiple encoders

for measuring pendulum and motor positions. This redundancy ensures continued

6

feedback even if one sensor fails or generates noisy data.

• Fail-safe Motor Control: In the event of instability or a detected fault (e.g.,
excessive pendulum deviation), the Arduino sends a zero motor command, effectively
acting as an emergency stop. This prevents runaway behavior and hardware damage.

• Thermal Compensation: Component layout and power regulation were tested
to avoid overheating. Passive cooling, proper spacing, and sufficient current ratings
help mitigate thermal risks.

3.3 Ishikawa (Fishbone) Diagram

Figure 7: Fishbone Diagram for the Inverted Pendulum and Cart System

This diagram organizes potential causes into six major categories, each branching into
specific sub-causes.

3.4 Power–Interest Grid

P
ow

er
L

ow
H

ig
h

Low HighInterest

Keep Satisfied Closely Manage

Monitor Keep Informed

• Innovation Lab Technicians
• UCL Department / Faculty

• Module Leader (Dr. Saeedi)
• Project Team

• General Public • Teaching Assistants

7

3.5 Risk Matrix

Low Medium High

Impact

L
ow

M
ed

iu
m

H
ig

h

P
ro

ba
bi

lit
y

1. Sensor noise
and Drift

2. Bluetooth
connection
failure between
devices

3. Damage to
Mechanical Parts
during Prototyping

4. Incorrect LQR
Parameter tuning

5. Overheating of
components during
testing

6. Incorrect Motor
Driver Wiring

Figure 8: Risk Matrix: Probability vs. Impact

3.6 Security Threats, Vulnerabilities, and Mitigation

Threat Vulnerability Mitigation Strategy

Unauthorized Ac-
cess to Control Sig-
nals

Unencrypted I2C communi-
cation between Arduino and
ESP32

Implement hardware-based au-
thentication or use checksum
verification to detect altered
messages

Bluetooth Hijack-
ing (if active)

Open pairing on ESP32
Bluetooth module

Disable Bluetooth if unused, or
implement secure pairing with
PIN authentication

Power Supply Tam-
pering

Exposed power connections
and unprotected regulator
input

Add protective casing and fuse
circuitry to prevent external
damage or tampering

Table 1: Security Threats, Vulnerabilities, and Mitigation Strategies

8

3.7 Applied Lean Methods
1. Continuous Improvement (Kaizen):

• Weekly reflection meetings were held to assess what worked and what could be
improved, iteratively refining both design and workflow.

• Feedback from each project milestone presentation was used to improve future de-
liverables.

2. Value Stream Mapping:

• All tasks were aligned with the goal of delivering a fully functional, stable inverted
pendulum system.

• Activities such as unnecessary simulations or duplicate documentation were depri-
oritized to focus on high-value work (e.g., system testing, real-time control).

4 System Requirement Specification

4.1 Dynamics and Kinematics Requirements Consistency
• Mathematical Modelling: A state-space model was obtained by deriving the

system dynamics from Newtonian mechanics and linearising around the upright
equilibrium point. This model describes in both the cart and the pendulum the link
among forces, accelerations, and angular displacements.

• Control-Oriented Simulation: Closed-loop responses under LQR control were
simulated in Python using the same linear model. Small oscillations damped out as
the system stabilised matched expected system behaviour in the simulated trajectory
of the pendulum angle and cart location.

4.2 Logical Requirements Consistency
• Functional Consistency: From modelling and control design to physical integra-

tion on the PCB and software, every fundamental functional need—such as pendu-
lum stabilisation, real-time sensor feedback, and motor actuation—is supported by
a clear implementation route.

• Control Loop Integrity: The control loop first uses deterministic actuation then
assumes timely and accurate sensor data. Verified for consistency and coherence is
the logical flow from measurement (encoder readings) to decision-making (Arduino-
based LQR control) to actuation (motor driver signals via ESP32).

9

4.3 Mealy Machine
• States: The system operates in several discrete states, such as:

– Idle: Waiting for initialization signal.
– Calibrating: Zeroing sensors, checking encoder values.
– Stabilizing: Actively applying LQR control to balance the pendulum.
– Override: Responding to manual intervention or predefined input triggers.
– Error: Entered when sensor values are out of bounds or communication fails.

• Inputs:

– Encoder readings (pendulum angle, cart position)
– Manual override signals (e.g., UART input from Serial Monitor)
– Initialization flags and sensor calibration results

• Outputs:

– Motor command sent via PWM to the driver (based on LQR)
– Status LEDs or serial messages for debugging and state identification
– I2C responses (sensor values) if requested by master

• Transitions: The system transitions between states based on real-time conditions,
such as successful calibration or sensor failures. For example, the system transitions
from Calibrating to Stabilizing once zero-position is verified, or from Stabilizing to
Error if angle deviation exceeds threshold.

4.4 Model-Based System Engineering (MBSE)

Figure 9: Eclipse Papyrus Activity Dia-
gram

Figure 10: Eclipse Papyrus Block Defini-
tion Diagram

10

Figure 11: Eclipse Papyrus Internal Block
Diagram Figure 12: Eclipse Papyrus Package Dia-

gram

Figure 13: Eclipse Papyrus Sequence Dia-
gram

Figure 14: Eclipse Papyrus State Machine
Diagram

Figure 15: Eclipse Papyrus Requirements
Diagram

Figure 16: Eclipse Papyrus Use Case Dia-
gram

4.5 Reliability and Failure Time Metrics
1. Observed Reliability During Testing:

11

• We conducted multiple 20-second test runs using each controller (LQR, Pole Place-
ment, PID) to evaluate system stability.

• Both the ESP32 and Arduino consistently returned valid encoder data, and no
significant drift or sensor dropout was observed.

2. Failure Conditions and Response:

• We defined a failure condition as any instance where the pendulum angle exceeded
±15◦ or the cart position went beyond ±0.5 m.

• The failsafe mode halted motor commands to protect hardware and prompted the
system to log diagnostic data for post-analysis.

5 Modelling and Simulation
In our simulation, the following measured hardware parameters were used:

• Cart mass (M): 1.081 kg

• Pendulum mass (m): 0.093 kg

• Pendulum length (l): 0.75 m

• Gravitational acceleration (g): 9.81 m/s2

5.1 Equations of Motion

5.1.1 Nonlinear Dynamics

The full nonlinear model, which includes contributions from inertial coupling, gravita-
tional forces, and damping effects, is given by:

(M + m)ẍ − mlθ̈ cos θ + mlθ̇2 sin θ = F − bẋ, (1)
−mlẍ cos θ + ml2θ̈ − mgl sin θ = −bdθ̇, (2)

where:

• F is the external force applied to the cart,

• b represents the damping in cart motion,

• bd is the damping at the pendulum pivot,

• ẋ and ẍ are the cart velocity and acceleration, and

• θ̇ and θ̈ are the angular velocity and acceleration of the pendulum.

12

5.1.2 State-Space Representation

By defining the state vector as:

s =
[
x ẋ θ θ̇

]T
,

the accelerations can be expressed as functions of the state and the control input. The
resulting nonlinear state-space model is:

ẍ =
F + ml

(
θ̇2 sin θ − θ̈ cos θ

)
− bẋ

M + m
, (3)

θ̈ =
(M + m)g sin θ + cos θ

(
F − bẋ + mlθ̇2 sin θ

)
− bdθ̇

ml
(

M+m
m

− cos2 θ
) . (4)

5.1.3 Linearized Model

For controller design, the system is linearized about the unstable equilibrium (θ = 0,
θ̇ = 0, ẋ = 0) using the small-angle approximations sin θ ≈ θ and cos θ ≈ 1. The resulting
linearized state-space model is:

ẋ = Ax + Bu, (5)

with

A =

0 1 0 0
0 − b

M
mg
M

0
0 0 0 1
0 − b

Ml
(M+m)g

Ml
− bd

ml2

 , B =

0
1

M

0
1

Ml

 . (6)

For simplified controller design on the pendulum’s angular dynamics, a reduced second-
order model is also derived:

A2 =
0 1

g
l

0

 , B2 =
 0

1
ml2

 . (7)

5.2 Controller Design and Implementation

5.2.1 PID Controller

The PID controller regulates the pendulum angle by combining proportional, integral,
and derivative actions:

u(t) = −
(

Kpθ + Ki

∫ t

0
θ(τ)dτ + Kd

dθ

dt

)
. (8)

Enhancements such as a deadzone for small errors, integrator anti-windup, position bias
compensation, and control scaling near equilibrium are added. Through iterative testing,

13

the controller gains were tuned to Kp = 1.2, Ki = 1.63, and Kd = 0.22.

5.2.2 Pole Placement Controller

Using the linearized model, the pole placement controller applies full-state feedback on
the reduced state vector xθ = [θ θ̇]T:

u = −Kxθ = −k1θ − k2θ̇. (9)

The gain vector K = [k1, k2] is computed so that the closed-loop poles are placed at
p1 = −3 and p2 = −4, ensuring a rapid yet stable response.

5.2.3 Nonlinear Controller

A nonlinear controller is implemented to handle large-angle deviations. It is defined by:

u = k2

(
Edesired − Ecurrent

)
sign(θ̇ cos θ), (10)

where

• Edesired = mgl is the target potential energy at the upright position,

• Ecurrent = 1
2ml2θ̇2 + mgl(1 − cos θ) represents the current mechanical energy, and

• k2 is a tuning parameter set to 1.0.

5.3 Python Implementation Details

5.3.1 Pendulum Physics Module

The inverted pendulum’s physical behaviour is captured by integrating the nonlinear
differential equations using a 4th-order Runge-Kutta method. (Fig. 50)

5.3.2 Sensor Noise and Filtering

Gaussian noise is added to the simulated sensor readings to reflect various noise sources.
To minimize the impact of this noise on the control performance, we implemented a
weighted moving average filter. (Fig. 51) (Fig. 52)

14

5.4 Results and Benchmarking

Figure 17: *
Scenario 1

Noise On, Filter On

Figure 18: *
Scenario 2

Noise Off, Filter Off

Figure 19: *
Scenario 3

Noise On, Filter Off

Figure 20: Comparison of Controller Performance Across Three Simulation Scenarios

Table 2: Comparison of Controller Performance Across Scenarios
Metric Scenario 1:

Noise + Filter-
ing

Scenario 2:
Ideal (No
Noise/Filter)

Scenario 3:
Noise Only (No
Filter)

PID Fast rise (0.149s),
long-lasting oscil-
lations, improved
with filtering

Clean response,
longer settling time
(4.50s), reduced
effort (0.25 N·s)

High noise sensitiv-
ity, increased effort
(1.27 N·s), settling
time 9.98s

Pole Placement Smooth and ef-
ficient, minimal
overshoot, 1.38s
settling time, 0.06
N·s effort

Nearly identical to
noisy case, shows
high robustness

Robust to noise,
0.141s rise time,
stable 1.38s settling
time

Nonlinear Larger cart swings,
higher energy use
(+4.90 N·s), sta-
bilised eventually

Unexpectedly large
excursions despite
no noise, energy-
saving logic

Unpredictable con-
trol effort, high but
stable, pendulum
remained upright

15

6 Prototyping

6.1 Electrical Diagram (Schematics)

Figure 21: Custom PCB
Layout for Inverted Pendu-
lum System

Figure 22: Full Electrical Schematic of the
Inverted Pendulum System

• Microcontroller Interface (U2): This is where the ESP32 (or other controller)
is mounted. It connects directly to peripheral components and motor drivers.

• Motor Driver (U3 - L293D): Positioned at the center, the L293D dual H-Bridge
driver controls two DC motors. Additional space is provided for a second L293D for
controlling all four motors.

• Encoder and Motor Headers (J1 to J4): These connectors provide organized
outputs for motor pins (intH1, intH2, 5V, GND), enabling easy plug-and-play with
motor encoders and wiring.

• Power Management:

– Power is supplied via a 12V input header (J6), then regulated down to 5V via
an onboard regulator (visible in the upper left).

– A dedicated power trace runs to each submodule, separating logic power and
motor power where needed.

• Peripheral Integration:

– The MPU6050 header (U7) supports I2C connection for the gyroscope/accelerometer.

– I2C lines (SCL, SDA) and power are routed directly to this module.

16

• Routing:

– Red traces represent the top copper layer.

– Blue traces represent the bottom copper layer.

– Signal traces are kept short and clear to minimize interference and cross-talk.

• Microcontrollers:

– ESP32 (U1) is used for motor control and sensor data handling. It receives
commands via I2C from the Arduino UNO (A1).

– Arduino UNO (A1) is responsible for high-level control, executing the LQR
algorithm, and transmitting motor commands to the ESP32.

• Power Supply (J6, U2):

– A 12V input (J6) is fed into a 5V voltage regulator (U2), which powers the
logic circuitry and sensor modules.

– Power is distributed to both the motor drivers and the microcontrollers.

• Motor Drivers (U3, U4 – L293D):

– Two L293D chips are used to control up to four DC motors (J1 to J4).

– Each driver has inputs (IN1, IN2) from the ESP32, and outputs connected to
motor terminals.

– Enable pins (EN1–EN4) are connected to PWM outputs on the ESP32 for
variable speed control.

• Encoders and Sensors:

– The rotary encoders are connected to the ESP32 via header J5, sending signals
on interrupt-capable pins for precise angular and linear motion tracking.

– I2C communication is used for devices such as the MPU6050, sharing SDA and
SCL lines.

• Signal Interfaces:

– The ESP32 and Arduino communicate via I2C using the header labeled J7,
with defined SDA, SCL, and GND lines.

– Clear labeling ensures minimal error in assembly and helps during debugging.

17

6.2 Mechanical (CAD) Design
The mechanical structure of our inverted pendulum system was developed through

iterative design and refinement. Our final model was changed to meet the specific project
requirements but some aspects were inspired by existing designs found in online resources
[2].

Figure 23:
Bearing
Holder
CAD
Model

Figure 24:
Mass
Holder
CAD
Model

Figure 25:
Motor
Holder
CAD
Model

Figure 26:
Rod
Holder
CAD
Model

Table 3: Descriptions of Custom Mechanical Holders
Component Description
Bearing Holder Supports spinning shafts or axles using a precisely circular

cutout to accommodate the bearing and reduce friction. The
base plate connects to the chassis, while the vertical plate
adds structural rigidity.

Mass Holder Ensures a snug fit inside a shallow chamber and allows
bottom-up insertion of the mass for easy attachment to the
rod. Designed for tool-free locking using insertions rather
than screws.

Motor Holder Aligns and secures a motor to a base frame. Features include
mounting holes for the frame and screw holes for attaching
the motor faceplate. A vertical flange supports the motor’s
flat mounting face and adds rigidity.

Rod Holder Holds the pendulum rod securely on the cart base. Includes
a vertical bore for the rod and a horizontal hole for a locking
pin or screw. Its oblong shape prevents rod slippage during
movement.

18

6.3 Controller Design Approaches
PID controllers are commonly applied due to their simplicity and effectiveness in

real-time applications [3]. Pole Placement techniques have been utilized for precision
control in various robotic systems requiring rapid stabilization [4]. Meanwhile, LQR-based
approaches have demonstrated superior robustness and energy efficiency in balancing
tasks, particularly in robotics and aerospace applications [5].

6.3.1 System Modeling and Linearization

All three controllers rely on a model of the inverted pendulum mounted on a cart. We
recall the physical parameters:

• M : mass of the cart (in kg),

• m: mass of the pendulum (in kg),

• l: distance from the pivot to the pendulum’s center of mass (in m),

• g: gravitational acceleration (approximately 9.81 m/s2).

Let the states be

x =

x1

x2

x3

x4

 =

cart position

cart velocity

pendulum angle (relative to upright)

pendulum angular velocity

.

Linearizing the system around θ = 0, the linearized state-space representation is:

ẋ = Ax + Bu,

where u is the force applied to the cart, and

A =

0 1 0 0

0 0 −mg
M

0

0 0 0 1

0 0 g(M+m)
Ml

0

, B =

0
1

M

0

− 1
Ml

.

6.3.2 PID Controller

1. Measure the angle θ (and optionally x) using an encoder.

2. Compute the PID terms (proportional, integral, derivative) each loop cycle.

19

3. Combine the commands to form the total control input u = uθ ± ux (depending on
your chosen control architecture).

4. Send u to the motor driver as a PWM and direction signal.

6.3.3 Pole Placement Controller

1. After linearizing, we define the state vector
[
x, ẋ, θ, θ̇

]T
.

2. We choose the desired poles that give us a stable and sufficiently damped response.

3. Solve for Kpp offline (in Python, MATLAB, etc.).

4. In the microcontroller loop, compute u = −Kpp x and convert to PWM signals for
the motor driver.

6.3.4 LQR Controller

1. Compute Klqr offline using numerical routines such as solve continuous are in
Python or the MATLAB lqr function.

2. In the microcontroller loop, form the state vector x = [x, ẋ, θ, θ̇]T from sensors/encoders.

3. Calculate the control input u = −Klqr x.

4. Scale and send the command u to the motor driver for actuation.

7 Overview

7.1 Benchmarking and Results

7.1.1 LQR Controller

In this subsection, we present the performance of the system under an LQR controller.
Figures 27 and 28 show the detailed angular and linear responses (with annotated metrics),
while Figures 29 and 30 show the underlying position and velocity data over 20 s. A
disturbance was introduced around t = 10 s. Key metrics for each of the signals (linear
position x and angular position θ) are also given below.

• Linear Position Response: The LQR controller drives x from an initial value
of −0.011 m to a steady state of about −0.020 m. The rise time (10 % to 90 %) is
roughly 12.5 s, and the system settles by about 18 s. The overshoot is modest (about
3.1 %), and the peak excursion occurs near 20 s.

20

Figure 27: Angular Position Response with
Metrics under LQR control. A distur-
bance of approximately −2.52◦ occurs at
t = 10.17 s. The final steady-state angle is
about 0.19◦.

Figure 28: Linear Position Response with
Metrics under LQR control. The fi-
nal steady-state position is approximately
−0.0200 m.

Figure 29: Overall Position (x) and Angu-
lar Position (θ) over 20 s under LQR con-
trol.

Figure 30: Velocities (ẋ and dθ/dt) over
20 s under LQR control.

• Angular Position Response: The disturbance around t = 10 s causes a large
drop to about −2.52◦ at t = 10.17 s. The final steady state remains near 0.19◦,
and the controller recovers within about 10 s after the disturbance. The overshoot
metric appears high (about 101%) because the system goes from 0◦ to nearly −2.52◦

upon disturbance.

• No Failures Observed: The maximum angular position magnitude is well below
±15◦, and the linear position stays within ±0.5 m, so no failure conditions are
reached during this 20 s test.

7.1.2 Pole Placement

Experimental Setup and Approach The system was commanded from an initial
condition of θ(0) = 0◦ and x(0) = 0 m. The controller was designed to move the sys-

21

Table 4: Linear Position (x) Metrics Under
LQR Control

Metric Value

Initial Position -0.011 m
Steady-State Position -0.0200 m
Step Change -0.0090 m
t10 5.15 s
t90 17.66 s
Rise Time (t90 − t10) 12.51 s
Settling Time 11.06 s
Overshoot (%) 3.11%
Peak Time 19.93 s
RMS Error 0.00665 m
IAE 0.11488
ISE 0.000885

Table 5: Angular Position (θ) Metrics Un-
der LQR Control

Metric Value

Initial Angle 0.0◦

Steady-State Angle 0.189◦

Step Change 0.189◦

t10 4.62 s
t90 4.62 s
Rise Time (t90 − t10) 0.0 s
Settling Time 12.93 s
Overshoot (%) 100.87%
Peak Time 9.90 s
RMS Error 0.4203◦

IAE 5.0200
ISE 3.5435

tem to a desired steady-state offset (i.e., its “step change”) while respecting prescribed
constraints:

• Angular position θ must remain below ±15◦.

• Linear position x must remain within ±0.5 m.

Results and Discussion Figure 31 shows the angular position response over time along
with key performance indicators (e.g. 10% and 90% times, peak time, etc.). Figure 32
shows the analogous linear position response. Figures 33 and 34 provide additional views
of the positions and velocities over the entire experiment.

Figure 31: Angular Position Response with
Metrics

Figure 32: Linear Position Response with
Metrics

22

Figure 33: Positions (linear x and angular
θ) over 20 s

Figure 34: Velocities (ẋ and dθ/dt) over
20 s

Linear Position Metrics Table 6 summarizes the key performance metrics for the
linear position x. Notably, the system has a steady-state value of about −0.0545 m, a
10% rise time near 3.95 s, and a 90% rise time near 17.73 s. This results in an overall rise
time (90%-10%) of roughly 13.78 s. The overshoot is about 10.25%, and the final peak
occurs near 19.93 s.

Angular Position Metrics Table 7 lists the corresponding metrics for the angular
position θ. A key observation is the large overshoot percentage of about 438%. However,
the absolute magnitude of θ remained below ±15◦, indicating that the physical constraint
was not violated. The 10% and 90% times are approximately 2.21 s and 2.41 s, giving a
short overall rise time of roughly 0.20 s. The system’s final steady state is near −0.1032◦.

Table 6: Linear Position (x) Metrics
Metric Value

Initial Position x(0) 0.0 m
Steady State −0.0545 m
Step Change −0.0545 m
t10 (s) 3.9465
t90 (s) 17.7258
Rise Time (s) 13.7793
Settling Time (s) 16.43
Overshoot (%) 10.25%
Peak Time (s) 19.9331
RMS Error 0.0342
IAE 0.5982
ISE 0.0233

Table 7: Angular Position (θ) Metrics
Metric Value

Initial Angle θ(0) 0.0◦

Steady State −0.1032◦

Step Change −0.1032◦

t10 (s) 2.2074
t90 (s) 2.4080
Rise Time (s) 0.2006
Settling Time (s) 15.23
Overshoot (%) 438.03%
Peak Time (s) 19.9331
RMS Error 0.2502
IAE 3.7366
ISE 1.2491

Conclusion From the data, the pole placement controller successfully kept the system
within acceptable bounds. The linear position steadily moved to approximately −0.0545 m

23

with about 10% overshoot, while the angular position remained near its target and did
not exceed ±15◦ in magnitude, despite a large overshoot figure in percentage terms.

7.1.3 PID Analysis

Figures 35–38 show the time responses and the computed performance metrics are sum-
marized below.

Figure 35: Angular Position Response with
Metrics

Figure 36: Linear Position Response with
Metrics

Figure 37: Positions (x and θ) over 20 s Figure 38: Velocities (ẋ and θ̇) over 20 s

24

Table 8: Linear Position
(x) Metrics
Metric Value

Initial Position x(0) 0.0 m
Steady State −0.0158554 m
Step Change −0.0158554 m
t10 (s) 9.90
t90 (s) 17.93
Rise Time (s) 8.03
Settling Time (s) 4.04
Overshoot (%) 7.22%
Peak Time (s) 20.0
RMS Error 0.01266 m
IAE 0.22845
ISE 0.003208

Table 9: Angular Position
(θ) Metrics
Metric Value

Initial Angle θ(0) 0.0◦

Steady State 0.0137440◦

Step Change 0.0137440◦

t10 (s) 3.41
t90 (s) 6.29
Rise Time (s) 2.88
Settling Time (s) 3.98
Overshoot (%) 11739.73%
Peak Time (s) 17.19
RMS Error 0.19003◦

IAE 1.84791
ISE 0.72342

7.1.4 PID with failure

As shown in the plots below, the angular position exhibits a significant overshoot around
t ≈ 12.4 s. That large deviation arises because of the deliberate human action, rather
than controller instability alone. The linear position, though perturbed, remains within
acceptable bounds (well below 0.5 m).

Figure 39: (Left) Angular Position Response with Metrics (Right) Linear Position
Response with Metrics. The overshoot in angular position is a result of a large human-
induced disturbance.

25

Figure 40: (Left) Positions over 20 Seconds (Right) Velocities over 20 Seconds.

Below are the key metrics captured during this run:

Table 10: Linear and Angular Position Metrics
Linear Position (x) Metrics

Metric Value
Initial 0.0
Steady State -0.0602
Step Change -0.0602
t10 (s) 6.2207
t90 (s) 18.0602
Rise Time (s) 11.8395
Settling Time (s) None
Overshoot (%) 6.3409
Peak Time (s) 19.6656
RMS Error 0.0407
IAE 0.7177
ISE 0.0331

Angular Position (θ) Metrics
Metric Value
Initial 0.0
Steady State -0.1052
Step Change -0.1052
t10 (s) 3.2107
t90 (s) 3.2107
Rise Time (s) 0.0
Settling Time (s) None
Overshoot (%) 427.7388
Peak Time (s) 7.1572
RMS Error 25.0158
IAE 157.9738
ISE 12557.6483

7.1.5 Failure Metrics

The system was subjected to five disturbances with the following settling times:

26

Disturbance Performance Summary:

• 1st disturbance: 4.6 s

• 2nd disturbance: 3.7 s

• 3rd disturbance: 6.78 s

• 4th disturbance: 4.9 s

• 5th disturbance: Failed (no settling
time; the robot fell over)

Excluding the failed 5th disturbance, the
average settling time is:

tsettle = 4.6 + 3.7 + 6.78 + 4.9
4 ≈ 5.0 s

The best performance was observed at a
6◦ pendulum angle, where the system
maintained stability.

Figure 41: System response over 40 sec-
onds. Stability maintained at 6◦; failure
occurred on 5th disturbance.

Additional Failure Times:
In further tests, four separate failure points were recorded (where the system could no

longer balance):

• Failure 1: 32.51 s

• Failure 2: 32.37 s

• Failure 3: 32.52 s

• Failure 4: 10.30 s

Mean Time to First Failure (MTTF):

MTTF = 32.51 s

(This is simply the time of the first observed failure.)
Mean Time Between Failures (MTBF):

MTBF = 32.51 + 32.37 + 32.52 + 10.30
4 ≈ 26.93 s

27

Figure 42: Failure at 32.37 s Figure 43: Failure at 32.52 s Figure 44: Failure at 10.30 s

Figure 45: System response plots showing failures during different disturbances.

7.1.6 Overall Controller Performance Comparison

Table 11 gives a concise overview of how all three controllers (PID, LQR, and Pole Place-
ment) performed. While each controller remained within the specified safety limits (±15◦

for angle and ±0.5 m for position), the following observations were made (from best to
worst overall behavior):

Table 11: High-Level Comparison of Controller Outcomes
Aspect PID LQR Pole Placement

Max |θ| (deg) ∼ 1.6◦ < 3◦ < 4◦

Max |x| (m) ∼ 0.02 < 0.03 ∼ 0.06
Angle Overshoot (%) ∼ 11740% (small setpoint) ∼ 100% ∼ 438%
Position Overshoot (%) ∼ 7% ∼ 3% ∼ 10%
Settling Time (s) 3.98 12.93 15.23
Overall Smoothness Most smooth Moderate Very aggressive
Safety Limits Violated? No No No

8 Conclusion
This project compared PID, Pole Placement, and Nonlinear Control for inverted pen-

dulum stabilisation. Each had performance, complexity, and robustness tradeoffs.
Although simple and effective, the PID controller is sensitive to tuning and distur-

bances [3]. Pole placement enhanced stability and response time, but required a precise
system model [4]. While nonlinear control was more robust and handled more circum-
stances, it required a better understanding of the system [5].

The optimum strategy is the PID controller. With low computing overhead, it is
simple and effective. PID’s ease of implementation and ability to work well in many
situations make it the best option for stabilising an inverted pendulum, notwithstanding
its tuning and disturbance sensitivity.

28

9 References

References
[1] U. of Michigan, “Inverted pendulum: System modeling,” n.d.

[Online]. Available: https://ctms.engin.umich.edu/CTMS/index.php?example=
InvertedPendulum§ion=SystemModeling

[2] A. Benitez, “Inverted pendulum cad model,” 2024. [Online]. Available: https:
//grabcad.com/library/inverted-pendulum-4

[3] A. Unknown, “Optimal controller design for inverted pendulum system: A
comparative study,” International Journal of Scientific and Engineering Research,
vol. 10, no. 5, pp. 1–6, 2019. [Online]. Available: https://www.ijser.org/researchpaper/
OPTIMAL-CONTROLLER-DESIGN-FOR-INVERTED-PENDULUM-SYSTEM-A-COMPARATIVE-STUDY.
pdf

[4] S. Irfan, L. Zhao, S. Ullah, A. Mehmood, and M. F. U. Butt, “Control
strategies for inverted pendulum: A comparative analysis of linear, nonlinear, and
artificial intelligence approaches,” PLOS ONE, vol. 19, no. 3, p. e0298093, 2024.
[Online]. Available: https://journals.plos.org/plosone/article?id=10.1371/journal.
pone.0298093

[5] A. Unknown, “Optimal control of nonlinear inverted pendulum system using pid
controller and lqr,” Journal of Control, Automation and Electrical Systems, vol. 25,
no. 2, pp. 187–194, 2014. [Online]. Available: https://link.springer.com/article/10.
1007/s11633-014-0818-1

29

https://ctms.engin.umich.edu/CTMS/index.php?example=InvertedPendulum§ion=SystemModeling
https://ctms.engin.umich.edu/CTMS/index.php?example=InvertedPendulum§ion=SystemModeling
https://grabcad.com/library/inverted-pendulum-4
https://grabcad.com/library/inverted-pendulum-4
https://www.ijser.org/researchpaper/OPTIMAL-CONTROLLER-DESIGN-FOR-INVERTED-PENDULUM-SYSTEM-A-COMPARATIVE-STUDY.pdf
https://www.ijser.org/researchpaper/OPTIMAL-CONTROLLER-DESIGN-FOR-INVERTED-PENDULUM-SYSTEM-A-COMPARATIVE-STUDY.pdf
https://www.ijser.org/researchpaper/OPTIMAL-CONTROLLER-DESIGN-FOR-INVERTED-PENDULUM-SYSTEM-A-COMPARATIVE-STUDY.pdf
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0298093
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0298093
https://link.springer.com/article/10.1007/s11633-014-0818-1
https://link.springer.com/article/10.1007/s11633-014-0818-1

10 Appendix

10.1 Ethical Considerations
A private business wants to exploit the idea to make a government-sold armament

system. Kant’s formalism or obligation ethics says we must defend everyone’s life. Since
the design would be utilised to construct a weapon system that would damage people, we
must not weaponise it. Since the creator cannot guarantee ethical use, we must not hand
over the design. The private corporation and government will have their own responsibility
to ensure the technology is not mishandled. Mill’s utilitarianism maximises everyone’s
net good. The ethical conclusion for utilitarianism depends on whether the weapon saves
or kills people. To help more people, the government will employ the weapon, which is
unethical because it would harm lives. Weaponising the design is severe and immoral,
according to Aristotle’s virtue ethics. The private corporation should not develop since
aiding war is immoral unless it is morally excellent. Contractionism says everyone has
rights by being alive. Thus, anybody harmed by this design’s weaponization should have
their right to life protected. In this case, handing over the design would violate the
individual’s right to life, even though it would express their freedom.

10.2 Figures and Code Snippets

Figure 46: Mind Map for Inverted Pendulum Project

30

Figure 47: Work Breakdown Structure (WBS) Table for the Inverted Pendulum Project

Figure 48: Gantt Chart Table: Project Task Breakdown and Dependencies

31

Category Description

Technical Risk:
Sensor Inaccuracy

Drift, noise, or delay in sensor data can lead to incorrect
control decisions.

Technical Risk:
Controller Instabil-
ity

Poorly tuned controllers can result in system oscilla-
tions.

Technical Risk:
Mechanical Failure

Includes weak mounting of the pendulum and excessive
friction at the pivot point.

Legal Risk: IP In-
fringement

The project may face legal consequences for copyright
or patent violations without proper attribution.

Legal Risk: Safety
and Liability Con-
cerns

If the system malfunctions and causes harm, there could
be legal consequences for the team.

Legal Risk: Data
Privacy Compli-
ance

If the system logs user interactions or sensor data, it
must comply with data protection regulations.

Table 12: Risk Breakdown Structure

32

Failure Mode Effect of Failure S O D RPN

Incorrect sensor read-
ing

Unstable system re-
sponse

8 6 4 192

Motor driver failure No motion / system
collapse

9 4 3 108

Loose wire connection Intermittent power
or signal

6 5 5 150

Overheating compo-
nents

Unexpected shut-
down

7 3 6 126

Control loop timing is-
sues

Delayed corrections
/ oscillations

6 6 5 180

Incorrect LQR tuning System cannot sta-
bilize

7 5 4 140

Bluetooth interference
(if active)

Data transmission
failure

5 4 6 120

Table 13: FMEA Table for Inverted Pendulum Project

Figure 49: Place poles function

33

Figure 50: Step Dynamics function

Figure 51: Noise enabled

34

Figure 52: Filter enabled

35

10.3 Planning and Results Video Link or Screenshot
The following video links provide further insight into our planning, results, and testing

using alternative control algorithms. Click on the links below to view the respective videos:

• Evaluation 1 and 2

• Testing with PID, LQR and Pole Placement

10.4 Code Submissions
The project code has been submitted via Moodle. For a complete view of the source

code, please visit the GitHub repository below:

Inverted Pendulum GitHub Repository

36

https://www.youtube.com/watch?v=T2Zkmt1vNGE
https://youtu.be/2di7nidkhLM
https://github.com/MuhammadMaazA/InvertedPendulum

	Introduction
	Project Planning
	Mind Map
	Work Breakdown Structure (WBS)
	Risk Breakdown Structure (RBS)
	A-B-M Estimates, Expected Time, and Standard Deviation
	Slack
	Project Network Diagram
	Critical Path and Completion Time (CP, CT)
	Gantt Chart
	RACI Matrix
	Probability of Completion

	Risk Management
	Failure Modes and Effects Analysis (FMEA)
	Redundancies and Compensatory Measures
	Ishikawa (Fishbone) Diagram
	Power–Interest Grid
	Risk Matrix
	Security Threats, Vulnerabilities, and Mitigation
	Applied Lean Methods

	System Requirement Specification
	Dynamics and Kinematics Requirements Consistency
	Logical Requirements Consistency
	Mealy Machine
	Model-Based System Engineering (MBSE)
	Reliability and Failure Time Metrics

	Modelling and Simulation
	Equations of Motion
	Nonlinear Dynamics
	State-Space Representation
	Linearized Model

	Controller Design and Implementation
	PID Controller
	Pole Placement Controller
	Nonlinear Controller

	Python Implementation Details
	Pendulum Physics Module
	Sensor Noise and Filtering

	Results and Benchmarking

	Prototyping
	Electrical Diagram (Schematics)
	Mechanical (CAD) Design
	Controller Design Approaches
	System Modeling and Linearization
	PID Controller
	Pole Placement Controller
	LQR Controller

	Overview
	Benchmarking and Results
	LQR Controller
	Pole Placement
	PID Analysis
	PID_with_failure
	Failure Metrics
	Overall Controller Performance Comparison

	Conclusion
	References
	Appendix
	Ethical Considerations
	Figures and Code Snippets
	Planning and Results Video Link or Screenshot
	Code Submissions

