Object Oriented Programming Team 6 Project Report

Agrawal, Rehan; Ramos Baroni, Harris

December 2024

Introduction

This project focuses on the task of generating random grasps for a robotic gripper in a simulated environment,
with the goal of training a classifier to distinguish between successful and failed grasps. The process begins
by generating a set of random hand poses relative to the object, where the gripper’s position and orientation
are varied with added noise. These grasp poses are then labelled based on their success or failure and used to
train a classifier that predicts the likelihood of a successful grasp. During testing, the system generates a grasp
pose, predicts its success, and evaluates the prediction by attempting to lift the object. The performance of
the classifier is analysed, particularly focusing on the impact of the amount of training data used on the success
of the classifier. In this report, multiple classifiers have been developed and compared comprehensively in the
analyisis section.

Methods

Overview of the program design

A diagram of the overall system is provided in Figure 1. The simulation project is designed to model a
robotic grasping system that incorporates multiple objects and grippers in a generic, extensible framework. The
Simulator class acts as the core component, orchestrating the interaction between grippers, objects, and labelling
mechanisms. It supports modularity by integrating gripper-specific implementations, such as ThreeFingers and
ShadowHand, through a shared FreeGripper base class. Gripper-specific details, including URDF paths and grip
motions, are stored within these subclasses to encapsulate their unique characteristics while maintaining a con-
sistent interface for the simulation. This design enables seamless switching between grippers without modifying
the core logic.

To generalise the system for different objects and grippers, the Simulator takes configurable parameters,
such as object paths and gripper models, as input. Object-specific attributes are loaded dynamically, and the
system can refresh or restart the simulation for new configurations. Grasping data, including positional and
contact-point features, is collected using the Labeler class, ensuring consistent output regardless of the input
object or gripper.

The trained classifier could be extended into a basic grasp planner. This planner would generate grasp poses
based on the object’s position and orientation, using the classifier to evaluate each pose. The framework is
designed to be extensible, which makes it easy to incorporate such a planner. New components or adjustments
can be added to improve the grasp planning process, ensuring the system remains adaptable and scalable as
future improvements are made.

Simulation details

The simulator is built to simulate and evaluate robotic grasping scenarios. It uses a configurable Simulator class
that initialises components such as grippers, objects, and the environment. For grippers, the FreeGripper base
class provides methods for initialisation, grasping actions, and generating random positions and orientations.
The gripper subclasses, such as ThreeFingers and ShadowHand, define specific kinematic and motion profiles.
Object data, including shapes and placement, is passed as arguments to the simulator. The simulation workflow
includes invoking methods to refresh the scene, apply random orientations, and calculate key metrics such as
grasp success. Additionally, the Labeler class automates data collection and feature extraction, making the
system scalable for different tasks and datasets.

This design ensures that the project remains modular, reusable, and easy to adapt for different grippers and
objects, making it suitable for experimentation and real-world robotic applications.

Class: Simulator

Class: Labeler

Class: Classifier

- gripper_model

- freeGripper = ShadowHand() or ThreeFingers(}
- labeler = Labeler()

- planeld

- objectld

- gripperld

-qg_angle

- object_path

Instance Variables:

- grasp_features
- labels

Methods:

- simulation()

- run()

- refresh_sim()

- quaternion_to_angle()

Methods:

- gather_features()
- export_data()

- contactPoints()

- label_graspl()

Instance Variables:
- folder_path

- target_column

- data

- combine_csv_files()

- preprocess_and_split()
- train_and_evaluate()

- def train_nn()

Class: ThreeFingers

+ gripperURDFpath
+ gripMetienPath

Class: FreeGripper

+ preshape()

Instance Variables:

- initial_position

- initial_orientation

- hand_base_controller
- gripperld

- numloints

- gripData

T

Class: NeuralNet

-input_dim

- forward()

Class: ShadowHand

+ gripperURDFpath Methods:

+ gripMationPath - gripper_initialise(self)
- graspl)

- preshape()

- openGripper()

- getlointPosition()

- random_position()

- random_orientation()

2

Class: nn.Module

Figure 1: Gripper Simulation Flowchart

Data generation
Pose generation

Figure 2 shows arrows placed around objects which represent some of the grasps generated in the simulations.
The robotic gripper poses were generated by sampling random positions on a sphere of radius radius centred
at the object, with slight perturbations introduced by in the direction of each coordinate axis x, y and z in a
specified range. Each position served as the tail of a vector pointing toward the object centre, computed and
normalised as a base orientation. To simulate variability, a small random deflection within max_deflection
was applied to the base vector using quaternion-based rotation. The result was a set of positions and deflected
orientation vectors pointing approximately toward the object.

Feature Gathering

The gather _features method of the Labeler class collects features for each grasp. It computes the gripper’s
position and orientation relative to the object using PyBullet’s invertTransform and multiplyTransforms
functions. The relative distance (gripperDist) is included as a feature. Contact data, such as the number of
contacts, positions, and forces, are extracted using contactPoints. If no contacts occur, penalising features like
centroid_dist defaults to gripperDist. For valid contacts, the forces are summarised into mean, maximum,
and total values, while the centroid of the contact points and its distance from the object centre (centroid_dist)
provide additional grasp quality metrics.

All features were organised into a dictionary, augmented with optional keyword arguments passed via kwargs,
and appended to the grasp_features attribute, a list for structured storage. In particular, this was useful to
gather the orientation deviation feature since its computation required elements which were not necessary
to pass to the gather_features method, so it was easiest to compute before its call and pass as an additional
argument. This method showcases Python’s OOP principles by combining encapsulation, modularity, and efficient
data handling using libraries like NumPy and pandas, while PyBullet facilitates physics-based simulations for
realistic feature extraction.

Labelling

The labelling of grasps was performed automatically by the program, rather than through manual intervention.
The criterion for labelling a grasp as successful was based on whether the gripper maintained a sufficient distance
from the object over a specified time threshold. If the distance between the object and a defined plane exceeded
a threshold, the grasp was labelled as successful (1); otherwise, it was labelled as failed (0). This criterion is
intuitively appropriate because it simulates the condition where the gripper successfully holds the object above
a certain height. A potential downside is that this method may not capture all types of grasp failures, such as
those due to instability or slippage, which might require additional criteria to improve accuracy. Figure 2 shows
several grasps labelled in this way, the green representing the successful grasps, and the red representing the

failed grasps.

B successful Grasp B successful Grasp
I Failed Grasp I Failed Grasp

0.25 0.25

0.20 0.20

0.15 - 0.15 -

0.10 0.10

0.05 0.05

0.00 0.00

0.2 0.2

0.0

Y 01 ¥) —01
0.1 _ 0.1 —
X 0.2 02 X 0.2 0.2
(a) Grasp poses around cube object. (b) Grasp poses around cylinder object.

Figure 2: Random grasps poses generated around objects.

Data preparation

The data preparation for this project focused on organising grasp data for training and evaluating a classifier
to distinguish between successful and unsuccessful grasps. The Labeler class collected features from multiple
simulation runs, including metrics like force applied, distance from the object, and number of contact points.
Each simulation used random initial gripper states to ensure diverse data.

The data was exported as CSV files and organised into folders based on gripper pose randomness levels. This
structure allowed the classifier to aggregate data by randomness level and analyse its impact on performance.

After aggregation, the data was preprocessed with a train-test split and feature standardisation to ensure
equal contribution from all features. No dimensionality reduction was applied, as all features were deemed
significant. This approach enabled effective classifier training and evaluation, while also analysing the effect of
pose randomness on grasp prediction.

Classifier Model Description

Overview of the Classifier

The classifier presented in this work is a modular machine learning pipeline designed to train and evaluate
different models incrementally using CSV datasets. The primary objective of the classifier is to predict the target
variable, success_rate, through models such as Logistic Regression, Random Forest, and Neural Networks. The
pipeline offers flexibility in preprocessing, training, and evaluation while supporting scalability to handle multiple
datasets. It integrates data preprocessing, model training, and performance evaluation in a systematic manner.

Structure of the Classifier

The pipeline consists of the following core components:

e CSV Combination Module: Randomly selects and combines CSV files incrementally, ensuring no du-
plication, to create datasets of varying sizes for experimentation.

e Preprocessing Module: Handles splitting the data into training and testing sets while applying optional
standardization to ensure consistent feature scaling.

e Neural Network Architecture: The classifier uses a custom-built neural network implemented in Py-
Torch. The architecture comprises:

Input Layer: Accepts the input features.

Fully Connected Layers: Four dense layers with ReLU activation functions for non-linearity.
— Dropout Layers: Dropout regularization with a rate of 0.3 to prevent overfitting.

— Output Layer: A single neuron with a Sigmoid activation function to predict probabilities for binary
classification.

e Training Module: Supports Logistic Regression, Random Forest, and Neural Network training. For
neural networks, training is performed using the Adam optimizer with a Binary Cross-Entropy loss function.

e Evaluation Module: Provides metrics such as accuracy, classification report, and confusion matrix for
performance assessment. Iterative training results are aggregated for larger datasets.

Epoch Selection

The neural network was trained using a batch size of 8, with training conducted for up to 100 epochs. The
training and validation loss trends were monitored to determine the optimal number of epochs. Figure 3 shows
the training and validation loss curves, which played a crucial role in selecting the optimal epoch value.

The graph illustrates a consistent decrease in training loss, while the validation loss decreases initially but
begins to increase after epoch 18. This divergence between training and validation loss is indicative of overfitting
beyond this point. The range of epochs 18 to 25 was identified as a candidate for optimal training, with epoch 18
providing the best balance between training performance and generalization, as reflected by the validation loss
curve. This selection was supported by observing that the model performed best on the validation set at epoch
18.

Batch Size and Learning Rate

The batch size was set to 8 to maintain a balance between training speed and model generalization. A smaller
batch size allows the model to learn from more granular updates, although it can increase training time. The
learning rate was set to 0.001 to ensure stable convergence while avoiding large oscillations in the loss function.

Training and Evaluation Results

The training results demonstrate the effectiveness of the classifier pipeline. By incrementally adding to the size
of the dataset and analyzing model performance, the classifier achieves reliable results across various models.
The aggregated classification reports and confusion matrices further validate its robustness and scalability.

Figure 1

AE> Q=B

Training and Validation Loss

Figure 3: Training and Validation Loss Curves. Optimal epoch range is highlighted between epochs 18 and 25,
with epoch 18 selected for best generalization.

Classification Model Performance

Model Performance Details

Note: Noise Level 1 is characterized by a translation range randomness in the range of 0.05 units along the
x-axis, 0.05 units along the y-axis, and 0.04 units along the z-axis, combined with an orientation noise of up to

15 degrees (max_deflection = 15).

Noise Level 2 is defined by a translation range randomness in the range of 0.04 units along the x-axis, 0.04
units along the y-axis, and 0.04 units along the z-axis, along with an orientation noise of up to 10 degrees

(max_deflection = 10).

The confusion Matrixes and Performance metrics are averaged from the last 1/3 sample size data. This is

because our sample size becomes big enough to give consistent enough results.

Logistic Regression with Noise Level 1

Performance Metrics:
e Precision (class 0): 0.903, Recall: 0.886, F1l-score: 0.893
e Precision (class 1): 0.728, Recall: 0.763, Fl-score: 0.741
e Overall Accuracy: 84.95%

Confusion Matrix:

[[308 40]
[34 104]]

Random Forest with Noise Level 1
Performance Metrics:

e Precision (class 0): 0.896, Recall: 0.950, Fl-score: 0.920
e Precision (class 1): 0.884, Recall: 0.758, Fl-score: 0.805
e Overall Accuracy: 88.75%

Confusion Matrix:

[[314 17]
[38 117]1]

Neural Network with Noise Level 1
Performance Metrics:

e Precision (class 0): 0.883, Recall: 0.911, Fl-score: 0.896
e Precision (class 1): 0.795, Recall: 0.732, Fl-score: 0.759
e Overall Accuracy: 85.58%

Confusion Matrix:

[[305 29]
[41 111]]

Logistic Regression with Noise Level 2

Performance Metrics:
e Precision (class 0): 0.808, Recall: 0.730, Fl-score: 0.762
e Precision (class 1): 0.787, Recall: 0.851, Fl-score: 0.815
e Overall Accuracy: 79.31%

Confusion Matrix:

[[181 68]
[42 249]]

06

Model Accuracy vs. Training Sample Size

80
Training Sample Size

06

Model Accuracy vs. Training Sample Size

i

Training Sample Size

Model Accuracy vs. Training Sample Size

:

80 100
Training Sample Size

Random Forest with Noise Level 2

Performance Metrics:

Model Accuracy vs. Training Sample Size

e Precision (class 0): 0.878, Recall: 0.785, Fl-score: 0.824 ol
e Precision (class 1): 0.808, Recall: 0.892, Fl-score: 0.844
e Overall Accuracy: 83.48% e

Confusion Matrix: 0

[[206 59] e s e
[31 244]]

Neural Network with Noise Level 2

Performance Metrics:

Model Accuracy vs. Training Sample Size

e Precision (class 0): 0.785, Recall: 0.816, Fl-score: 0.794
e Precision (class 1): 0.849, Recall: 0.820, Fl-score: 0.830 v
e Overall Accuracy: 81.54% e

Confusion Matrix: 02

[[193 44] R N
[66 247]1]

Detailed Analysis
Random Forest Superiority:

e Random Forest consistently handles noisy data effectively, maintaining higher precision and recall across
both classes compared to Logistic Regression and Neural Networks.

e Its ability to balance true positive and true negative rates highlights its robustness under varying conditions.
Logistic Regression Weaknesses:

e Logistic Regression is particularly sensitive to noise changes, resulting in lower accuracy and higher false
negatives for class 1.

e Under lower noise conditions, Logistic Regression’s performance declines further, showing a lack of adapt-
ability.

Neural Network Trade-offs:

e While Neural Networks show moderate stability, they exhibit fluctuations in accuracy, particularly under
higher orientation noise.

e Their precision for class 1 remains lower than Random Forest, indicating a need for further tuning or feature
engineering.

Noise Impact Analysis:

e Higher positional noise with higher orientation noise (ori-noise_15) results in more stable performance
for all models compared to lower noise configurations.

e Models are more challenged by the second noise configuration (pos_noise_[0.04, 0.04, 0.04], ori noise_10),
with Logistic Regression suffering the most.

Further Results

Varying Training Set Size

The graphs corresponding to this analysis are presented below under the section titled Classification Model
Performance. For each noise level and classifier model, we observe the following trends:

Observing the figures relating to the model accuracies against the training set size, we see first of all that the
general trend is for the accuracy to increase with the training set size, although this is not the case always.

We notice that when the sample size ranges between 0 and 30/40, the accuracy is either extremely low—potentially

due to poor-quality data—or exceptionally high, nearing 1, which may suggest data bias. This scenario might
arise from data exhibiting high variance, where instances are dispersed widely. In such cases, logistic regression
and random forests tend to perform relatively well.

When the sample size increases to the range of 30 to 100, the accuracy becomes notably erratic or unstable.
At this stage, accuracy fluctuates significantly, oscillating between extreme lows and highs. This instability
indicates that the dataset is insufficient for achieving reliable accuracy, necessitating a larger sample size for
improved precision.

Finally, when the sample size reaches the last one-third of the dataset, the accuracy stabilizes, and the
fluctuations diminish. This plateau in accuracy suggests that the dataset has reached a minimum threshold,
providing consistently reliable results. This stabilization serves as a positive indicator of adequate sample size
for the models under consideration.

Feature importance

Figure 4 depicts how correlated some of the features were. In addition, the success was included in the plot which
indicates to some extent how important that features were in the classification process. Observing the right-most
column (or equivalently, the bottom-most row), the correlations with greatest magnitudes (irrespective of sign)
of features with the grasp outcome indicate greatest importance.

In logistic regression, the decision variables (the coefficients) represent the change in the log-odds of the out-
come for a one-unit change in the corresponding predictor, with the odds ratio e’ representing the multiplicative
change in the odds of the outcome. For logistical regression classification, we can obtain these coefficents which
correspond to the features and indicate the feature importance. Using a logistical regression classifier trained
on 42 points and tested on 18 points, we indeed find that these coefficients are [-1.44, -0.44, 0.79, 0.40, -0.83,
0.99, -0.048], which, for the most part, clearly correspond both in sign and magnitude to the correlations in the
bottom row of the figure [-0.65, -0.29, 0.56, -0.03, 0.27, 0.53, -0.07]. (These values may be obtained from the
“classifier_notebook.ipynb” in the Github project.) Indeed, we find that greater relative distance of the gripper
from the object corresponds the most negatively to the success rate, whereas total contacts and total force had
the greatest relevance. This is evident in both the logistic regression coefficients and the correlations. Note that a
limitation of this analysis is that it does not consider the greatest (nor least) relevance in any arbitrary direction
in the feature space.

Feature Correlation Heatmap

10
0.8

contact centrd. dist. 0.37 .
-0.6
total contacts -0.15 0.56
-04
mean force 0.08 0.03
-0.2
max force 0.0
-0.0
--0.2

orientation deviaton

success_rate -0.65 -0.29 0.56 -0.03 0.27 0.53 -0.07 1.00

max force
total force

Q
et
©
=
[
0
L
o
o
=]
]

total contacts
mean force

@
]
=
T

=

o

k=i
]
=

=}

L}
[
2

contact centrd. dist.
orientation deviaton

Figure 4: Feature correlation heatmap

Discussion

As discussed, a potential downside to our particular labelling criterion (checking for any object drops within a
time limit) is that this method may not capture the effect of all types of grasp failures, such as those due to
instability or slippage, which might require additional criteria to improve accuracy.

Another aspect which potentially have been improved is the feature selection. For example, the actual
displacement of the gripper in any particular x, y or z axis was not considered in our testing and analysis (although
it was perfectly possible to include it through our optional additional arguments kwargs to the gather_features
method of the Labeler). This was under the assumption that the gripperDist would capture these more
effectively and concisely. gripperDist, however, may be more limited in relevance for objects which do not
exhibit rotational symmetry about a vertical axis, and it also may suffer if the angle of approach differs.

Regarding some general aspects of the scope and goals we focused on, while our program could theoretically
train the classifiers based on grasp data obtained from using different grippers or objects, we mostly focused
on the single ThreeFingers gripper on a cube object. Grasp performance on the cylinder was similar to the
cube so its investigation was of little interest to us. We also tried loading URDFs for objects available from
“kwonathan/ycb_urdfs” on Github (Kwonathan 2024) but the objects were rather difficult for the grippers to
grab which meant that training data was not very clean. A similar issue occurred with the ShadowGripper where
the grasping itself was difficult to achieve. Although very possible to achieve, it became less interesting for us
to focus on this as it seemed like the success of the grasp itself in simulation was not exactly in the scope of the
original project.

References

Kwonathan (2024). YCB URDFs. Accessed: December 11, 2024.

